The RADIANCE Lighting Simulation and Rendering System

Gregory J. Ward / GJWard@lbl.gov

Citation:
Ward, Gregory J., "The RADIANCE Lighting Simulation and Rendering System," Computer Graphics (Proceedings of '94 SIGGRAPH conference), July 1994, pp. 459-72.
Download PDF


ABSTRACT

This paper describes a physically-based rendering system tailored to the demands of lighting design and architecture. The simulation uses a light-backwards ray-tracing method with extensions to efficiently solve the rendering equation under most conditions. This includes specular, diffuse and directional-diffuse reflection and transmission in any combination to any level in any environment, including complicated, curved geometries. The simulation blends deterministic and stochastic ray-tracing techniques to achieve the best balance between speed and accuracy in its local and global illumination methods. Some of the more interesting techniques are outlined, with references to more detailed descriptions elsewhere. Finally, examples are given of successful applications of this free software by others.

CR Categories: I.3.3 [Computer Graphics]: Picture/image generation - Display algorithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Shading.

Additional Keywords and Phrases: lighting simulation, Monte Carlo, physically-based rendering, radiosity, ray-tracing.

1. Introduction

2. System Design Goals

2.1 Ensure Accurate Calculation of Luminance

2.2 Model Both Electric Light and Daylight

2.3 Support a Variety of Reflectance Models

2.4 Support Complicated Geometry

2.5 Take Unmodified Input from CAD Systems

3. Approach

3.1 Hybrid Deterministic/Stochastic Ray Tracing

3.2 Cached Indirect Irradiances for Diffuse Interreflection

3.3 Adaptive Sampling of Light Sources

3.4 Automatic Preprocessing of "Virtual" Light Sources

3.5 User-directed Preprocessing of "Secondary" Sources

3.6 Hierarchical Octrees for Spatial Subdivision

3.7 Patterns and Textures

3.8 Parallel Processing

3.9 Animation

3.10 Implementation Issues

4. Applications and Results

4.1 Electric Lighting

4.2 Daylighting

5. Conclusion

6. Acknowledgements

7. Software Availability

8. Bibliography

9. Appendix