Radiance Source Tree Roadmap

src/

cal/ calculation utilities
|cal/ .cal utility files

|calc/ cal ¢ program

|connDn/ shared source files

|rca|c/ rcal c program

|uti|/ data utility programs

common/ shared source and headers

cv/ scene format translators

nmgflib/ M- parser library

gen/ generators, scene mani pul ators

lib/ compiled libraries

meta/ 2D graphi cs package

ot/ scene conpilers

px/ picture filters and translators
libtiff/ TIFF library |

| rt/ renderering prograns |

| util/ utility prograns |

Figure 1. Radiance source directory tree.

The Radiance source treeis divided into six main subdirectories
corresponding to the principal program categories, plusasr ¢/ conmon/
subdirectory for shared header and library modules. Two other
subdirectories, src/ cal / andsr c/ met a/ , build programs that were not
initially part of the standard distribution. Additional subdirectories of the
main subdirectories contain auxiliary libraries that we will describe later.

Radiance Source Tree Roadmap Greg Ward Larson 1

Let us start first with alist of the programs built in each of the six main
source subdirectories, shown in Table 1.

Directory Category Programs

src/cv/ Scene Format arch2rad ies2rad lampcolor mgf2inv
Trangdlators mgf2meta mgf2rad mgfilt nff2rad

obj2rad rad2mgf thf2rad tmesh2rad

src/ gen/ Generators, genblinds genbox genclock genprism
Scene genrev gensky gensurf genworm
Manipulators mkillum replmarks xform

src/ ot/ Scene Compilers | getbbox oconv

src/rt/ Renderers lookamb rpict rtrace rview

src/ px/ Picture Filters falsecolor macbethcal normpat oki20

and Trandators | oki20c paintjet pcomb pcompos pcond
pdfblur pextrem pfilt pflip pinterp
pmblur protate psign pvalue ra_avs
ra_bn ra_gif ra_pict ra_ppm ra pr
ra_pr24 ra_psra_rgbe ra t16 ra t8
ra_tiff ra_xyze ttyimage ximage
xshowtrace

src/util/ |uUtility Programs |dayfact debugcal findglare getinfo
glare glarendx objline objpict objview
rad raddepend ranimate rlux rpiece
trad vwright xglaresrc

Table 1. The six main Radiance source subdirectories and the programs
built there.

The easiest way to explain how Radiance programs are built isto select
two example programs from each subdirectory, one typical and one atypical,
and describe their compilations. We will begin with thesr c/ cv/
subdirectory (scene format translators), then move through the othersin the
order givenin Table 1. Be sureto read the beginning of the next section, asit
gives information that is valuable but not repeated later. Also, thesrc/rt/
subdirectory (rendering programs) will be treated specially, with some hints
on adding new device driversto rview and creating new scene primitive

types.

Radiance Source Tree Roadmap Greg Ward Larson 2

Scene Format Translators

The two example programs we will describe fromthesr c/ cv/
subdirectory are obj2rad and mgf2rad, which correspond to atypical and an
atypical scene converter, respectively.

In any Radiance source directory, you may use rmake to build individua
programs or install all the programs for that directory using the specia target
"install". The rmake command isitself a short shell script that calls make
with the appropriate options and variable settings as determined by makeall
for this particular system. Let uslook at atypical rmake script:

#!/ bi n/ sh

exec nmake "SPECI AL=tiff" \
"OPT=-2" \
" MACH=- DALI G\=doubl e -cckr" \
ARCH=sgi " COMPAT=malloc.o strcnp.o" \
| NSTDI R=/usr/ | ocal / bin \
LI BDI R=/usr/local/lib/ray \
"$@ -f Rmakefile

The variables used by rmake to control compilations in the various
Rmakefile's are:

SPECI AL Specific modules to compile on this machine, which
would normally be skipped.

OPT Compiler optimization options, which may affect
performance but should not affect correctness.

MACH Compiler options needed to get Radiance to work on this
machine.

ARCHThe name of this machine architecture, which is used by some
modules for more specific compilations.

COVPAT C library modules that should be replaced by Radiance-
specific versions either for performance or correctness reasons.

| NSTDI R The destination directory for executable binaries.

LI BDI R Thecentra library directory for auxiliary Radiance files.
M_1 B Alternative C math libraries.

CC The C compiler command name.

Radiance Source Tree Roadmap Greg Ward Larson 3

These settings may be altered manually if for some reason makeall
misses something by editing the r make file in the destination directory
(I NSTDI R).

The obj2rad program trand ates Wavefront .OBJ format filesinto
Radiance. It usestheroutinesint r ans. c toreadinauser'srulefilefor
mapping materials onto surfaces. (See the obj2rad man page or
doc/ not es/ transl at or s for details.) Additional routinesin
t mesh. ¢ are used for smoothing triangulated meshes. Running "r make
obj 2r ad" resultsin the following compilations:

% r make obj 2rad

cc -2 -DALI G\=doubl e -cckr \
-1../comon -L../lib -c obj2rad.c

cc -2 -DALI G\=doubl e -cckr \
-1../comon -L../lib -c trans.c

cc -2 -DALI G\=doubl e -cckr \
-1../compon -L../lib -c tnesh.c

cc -2 -DALI G\=doubl e -cckr \
-1../comon -L../lib -0 obj2rad obj2rad.o \
trans.o tmesh.o -lrt -Im

Note the appearanceof -1 . . / common and- L. ./ 1 i b oneach
compileline. These are necessary to find the common header filesin
src/ common/ and the common librariesinsr c/ | i b/ . Specificaly,
obj 2r ad. c refersto st andar d. h, whichisinsrc/ comon/ , and

obj2rad loads the following modulesfromthesrc/ i b/ i brt. a library:

header. c - reads and wites info. headers
fgetline.c - gets backsl ash-escaped |ines
fvect.c - handl es 3D vector math
savestr.c - saves shared, read-only strings
badarg. c - checks argunent types

wor ds. ¢ - checks word formats

eputs. c - puts message to stderr

quit.c - calls exit(1)

strcnp. c - replacenment for strcnp(3)

These descriptions (or something like them) may be found in the
sr ¢/ common/ README file, and each source directory should contain an
up-to-date list of source files and one line descriptions of each. Additionally,
each source directory containsat ags file, which may be used by vi to
quickly go between function and macro definitions in that directory (and

Radiance Source Tree Roadmap Greg Ward Larson 4

src/ common/). Thisisthe easiest way to understand a program, by
locating all of its constituent parts. Be careful, though, since some function
names appear more than once, and the tag command may not always take you
to the correct definition. When in doubt, check the SCCSid at the top of the
file and compare it with the executable with the what command.

The trandator mgf2rad is dightly more complicated, since it is based on
the Materials and Geometry Format ', which has its own parser library. This
library isbuiltinthesr ¢/ cv/ ngf | i b/ subdirectory then moved to
src/lib/1ibngf.apriortolinking. The compilation looks like this:

% r make nyf 2rad
cd ngflib ; rm-f libngf.a ;
make |ibngf.a CC=cc \
CFLAGS="- 2 - DALI G\N=doubl e -cckr \
' - DVEM PTR=char *' -DNOPROTO' ; \
cp libmf.a ../../1ib
cc -2 -DALI G\=doubl e -cckr \
' - DVEM PTR=char *' -DNOPROTO -c parser.c
cc -2 -DALI G\=doubl e -cckr \
' - DMEM PTR=char *' -DNOPROTO -c context.c
cc -2 -DALI G\=doubl e -cckr \
' - DVEM PTR=char *' -DNOPROTO -c xf.c
cc -2 -DALI G\=doubl e -cckr \
' - DVEM PTR=char *' -DNOPROTO -c object.c
cc -2 -DALI G\=doubl e -cckr \
' - DVEM PTR=char *' -DNOPROTO -c | ookup.c
cc -2 -DALI G\=doubl e -cckr \
' - DMEM PTR=char *' -DNOPROTO -c badarg.c
cc -2 -DALI G\=doubl e -cckr \
' - DVEM PTR=char *' -DNOPROTO -c words.c
cc -2 -DALI G\=doubl e -cckr \
' - DVEM PTR=char *' -DNOPROTO -c fvect.c
ar rc libngf.a parser.o context.o \
xf.o object.o | ookup.o badarg.o words.o fvect.o
ranlib |ibngf.a
cc -2 -DALI G\=doubl e -cckr \
-I../comon -L../lib '-DVEM PTR=char *' \
- DNOPROTO -c¢ ngf 2rad. c
cc -2 -DALI G\=doubl e -cckr \
-1../comon -L../lib -0 ngf2rad ngf2rad.o \
tmesh.o -Ingf -lrt -Im

" The Materials and Geometry Format was developed by the authors as a neutral exchange format for
lighting simulation and rendering. For further information, see the MGF web site at
"http://radsite.Ibl.gov/mgf/HOME.html".

Radiance Source Tree Roadmap Greg Ward Larson 5

Thefirst part calls make inthengf | i b/ subdirectory and moves
| i bngf . atosrc/|i b/, andthe second part compiles and links
ngf 2rad. ¢ andt mesh. c to the necessary libraries.

Generators and Scene Manipulators

Most generator programs rely on little el se besides the basic C module
containing the main function, since generating Radiance scene files can be
accomplished easily with simplecallsto pri nt f (3) . In some cases, as
with gensurf, the generator uses the functional language, and therefore needs
some of the cal * modulesfrom thesr ¢/ common/ directory (compiled
intothesrc/1ib/librt. alibrary). Unlike generators, scene
manipulation programs, such as replmarks and xform, read as well aswrite
scene descriptions, and may require additional library support. The most
exotic program built in this directory by far is mkillum, which not only reads
In scene descriptions, but calls rtrace as a subprocess to compute radiance
distributions for surfaces. We will use mkillum as our example of an unusua
compilation for thesr c/ gen/ directory, and genrev will serve as our more
typical example.

The compilation of genrev looks something like this:

% r make genrev

cc - DALI G\N=doubl e -cckr -Q2 \
-1../comon -L../lib -c genrev.c

cc - DALI G\N=doubl e -cckr -Q2 \
-l../comon -L../lib -0 genrev genrev.o -lrt -Im

The functional language modules used from sr ¢/ conmon/ are
cal defn. c,cal func. c,andcal expr. c. These modules allow
genrev to parse and evaluate variable and function definitions that describe
the parametric shape of a surface of revolution. Many programs utilize these
same library modules and use the functional language in different capacities.

As promised, the compilation of mkillum is more complicated, and is
broken into three main modules, nki | | um ¢, nki | | un. ¢ and
nki | | unB. ¢, which share the common header filerki | | um h. The
compilation looks like this:

Radiance Source Tree Roadmap Greg Ward Larson 6

% rmake nkill um

cc - DALI G\N=doubl e -cckr -2 \
|../common -L../lib -c nkillumc

cc - DALI G\N=doubl e -cckr \

-2 -l../comon -L../lib -c nkillun®.c

cc - DALI G\N=doubl e -cckr -DSPEED=60 \
-2 -l../comon -L../lib -c nkillunB.c

cc - DALI G\N=doubl e -cckr \
-2 -l../comon -L../lib -0 nkillum\

nkillumo nkillunR.o nkillunB.0 -lrt -Im

This program relies quite heavily on the modulesin sr ¢/ conmon/
including the following:

error.c - error reporting function
getpath.c - search for full path to file
process. c - adm ni strate subprocess
urand. c - | ow di screpancy sequence
gener at or

otypes.c - determne primtive type
readfargs.c - read primtive argunent |ist
face.c - initialize polygon primtive
mul ti sanp. c - mul ti-di nensional LDS

cone. c - initialize cone/cylinder/ring
mat 4. c - 4x4 matrix conputations

Using these routines, mkillum is able to read in Radiance scene files and
generate ray samplesfor rtrace to compute outgoing radiance values. These
are then collected into data files, which are referenced in a modified scene
description and sent to the standard outpui.

Scene Compilers

There are currently two programs compiled inthe sr ¢/ ot / directory,
genbox and oconv. The oconv program generates an octree for the given
scene file(s), which is then used to accelerate the ray tracing process. The
genbox program is a gutted version of oconv whose sole purpose isto
compute the bounding box of one or more scene files. The compilation of
oconv looks like this:

Radiance Source Tree Roadmap Greg Ward Larson 7

% r make oconv
cc -DSTRI CT - DALI GN=doubl e -cckr \

-2 -1../comon -L../lib -c oconv.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -1../common -L../lib -c sphere.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -I../comon -L../lib -c witeoct.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -1../common -L../lib -c o_face.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -1../comon -L../lib -c o_cone.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -1../comon -L../lib -c o_instance.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -1../comon -L../lib -c bbox.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -1../comon -L../lib -c initotypes.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -1../comon -L../lib -DVMEMHOG -c readfargs.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -1../common -L../lib -c mlloc.c

cc -DSTRI CT - DALI GN=doubl e -cckr \
-2 -1../comon -L../lib -0 oconv oconv.o

witeoct.o sphere.o o_face.o \
0_cone. o o_instance. o bbox.o readfargs.o \
initotypes.o malloc.o -Irt -Im

The - DSTRI CT option makes sure that oconv generates tight bounds
around its surfaces. Without this, oconv would produce octrees dightly faster
(especially if there are many cones), but rendering times might be
significantly longer in certain cases. Even though ther eadf ar gs. ¢
moduleiscompiledinthesrc/ i b/ i brt. alibrary, itisrecompiled here
with the - DMEMHOG flag to avoid the memory overhead associated with
mal | oc() by substituting bmal | oc() instead.

Once oconv has been built, getbbox requires only afew special-purpose
modules, i ni t 20t ypes. ¢c andr eadobj 2. ¢. These substitute certain
function assignments and scene parsing code to avoid storing the mode in
memory like the standard routines. Also, the library-compiled
r eadf ar gs. c isused because memory is being freed shortly after it is
read. The compilation lookslike this:

Radiance Source Tree Roadmap Greg Ward Larson 8

% r make get bbox
cc -DSTRI CT - DALI G\N=doubl e -cckr \

-2 -1../comon -L../lib -c getbbox.c

cc -DSTRICT - DALI GN=doubl e -cckr \
-2 -1../comon -L../lib

cc -DSTRICT - DALI GN=doubl e -cckr \
-2 -1../common -L../lib -c init2otypes.c

cc -DSTRICT - DALI GN=doubl e -cckr \
-2 -1../comon -L../lib -0 getbbox getbbox.o

readobj 2. o bbox.o init2otypes.o -Irt -Im

Rendering Programs

As one might expect, the compilation of the rendering programsis the
most complicated. There are many object fileslocal tothesrc/rt/
subdirectory and many library modules linked in aswell. Other modules have
symbolic links to the sourcesin sr ¢/ conmon, but are recompiled locally to
enable or disable specific features and optimize performance.

Rather than reproducing the long and tedious compile here, let us ook in
somedetail at src/ rt/ Rmakefil e instead. Thiswill give us better
insight into what is going on and how we might make modifications to the
code or the compilation process. Rmakef i | e beginswith the following
variable settings, which will often be overridden by ther make script:

OPT = -0

MACH = - DBSD

CFLAGS = $(MACH) $(OPT) -I../comon -L../lib
SPECI AL = aed

CC = cc

M.IB = -Im

The CFLAGS variableis usually left alone, and affected indirectly instead
by the settings of the MACH and OPT variables. An exception to this might
occur if aparticular C compiler wants a space between its- | and - L options
and their arguments. These options are essential to the compiler finding the
Radiance-specific header and library filesit needs.

Rview Device Drivers

Skipping down a bit, we reach the variables corresponding to device
drivers needed for the rview program:

Radiance Source Tree Roadmap Greg Ward Larson 9

#
Device drivers for rview (see al so devtable.c):
#
DOBJS = devtabl e.o devcommo editline.o \
x11.0 x11twind.o colortab.o
DSRC = devtabl e.c devcommc editline.c \
x11l.c x11ltwind.c colortab.c
DLI BS = -] X11

These are the objects that will be linked directly into rview, and which
ones are needed is determined by the contentsof src/ rt/ devt abl e. c:

/*

* devtable.c - device table for rview
*/

#i nclude "driver.h"

char dev_default[] = "x11";

extern struct driver *x11 init();

struct device devtable[] = { /* supported
devi ces */
{"slave", "Slave driver", slave_init},

{"x11", "X11 color or greyscale display", x11_init},
{"x11d", "X11 display using stdin/stdout”, x11 init},
. {0} /* term nator */

Originally, rview supported more devices than X11, and through the
routinesinsrc/ rt/devconm c, it still can. One of these routinesis
slave_init(), whichsetsupst di n andst dout to act as
communication channels between rview and its parent process, through
which control commands are taken in and display commands are sent by
rview. Another routine, conm_i ni t (), permits unlinked device driversto
be used through UNIX interprocess communication channels (i.e., pipes).
The smple driver protocol is defined and describedinsrc/ rt/ dri ver. h.
Creating a new device driver means following the templates for the requisite
device driver routines, and either linking it into rview directly viadevt abl e
or as a separate process by linking to the routinesinsrc/ rt/ devmai n. c.

As an example of this, let uslook at the original X Version 10 driver,
which may be linked in a separate program executable for ancient systems
that still supportit. Insrc/rt/ Rmakefi | e, wefind thefollowing lines.

Radiance Source Tree Roadmap Greg Ward Larson 10

$(DEVDI R)/ x10: x10.0 xtwi nd.o colortab.o \
devnain.o editline.o

$(CC) $(CFLAGS) -s -0 $(DEVDI R)/x10 \
x10.0 xtwi nd.o devimain.o colortab.o \
editline.o -1 X $(LIBS)

x10.0: x10.c
$(CCO $(CFLAGS) -Dx_init=dinit -c x10.c

Since the X 10 library cannot be linked to the same program that links to
the X11 library (due to name collisions and numerous other problems), this
driver must be a separate executable. Other drivers could share the same
name space as the rest of rview, but putting them in a separate executable
might still make sense if they are rarely used and/or take up alot of program
memory whether they are used or not, asis the case with the SunView driver.
The specia compilation of a separate driver executable requires redefining
the initialization routine because the mai n() functionin
src/rt/devmai n. c dwayscalsdi ni t () asitsdriver initidization
routine. This shows up in the define used for compiling x10. o above.

Thesrc/rt/ Rmakefi | e variable DEVDI R determines where driver
executables are stored. This can be a standard location, but isusualy a
subdirectory of the Radiance DESTDI R executable directory so that they are
not accidentally invoked by a user, and regular programs are not mistaken by
rview for drivers.

If desired, adriver compiled separately in this way may be entered into
devt abl e withconmm_i ni t () asitsinitializing routine so that it shows
up when rview -devices isrun, but thisis not necessary. Any driver givento
rview with the -o option that is not found in devt abl e will be handed to
comm.i ni t () asapossible externa driver program name.

Rendering Modules And Version String

Getting back tosr c/ rt/ Rmakef i | e, we see the definition of severa
variables to hold the many source and object files of the rendering programs.
The commonalty between rtrace, rpict and rview is evident in the three
variables that define their differences:

Radiance Source Tree Roadmap Greg Ward Larson 11

RTOBJS = rtmain.o rtrace. o duphead. o persist.o \
prel oad. o $(ROBJS) Version.o

RPOBJS = rpmain.o rpict.o srcdraw. o duphead. o \
persist.o preload. o $(ROBJS) Version.o

RVOBJS = rvnain.o rview.o rv2.0 rv3.0 \
freeobjmem o $(DOBJS) $(ROBIS) Version.o

Here we see that each program has its own special module, called
respectively, rtrace. o,rpi ct.oandrvi ew. 0. Inaddition, rtrace and
rpict link toduphead. o, per si st. o and pr el oad. o, which are
needed for persistent and parallel execution (the -P and -PP options). The
rview link includesr v2. o, rv3. o, f r eeobj mem o and the device driver
objects (DOBJ S) mentioned earlier. The module Ver si on. o is special and
deserves some mention here.

The sourcefilesrc/ rt/ Ver si on. ¢ indicates the current renderer
version, and usually looks something like this:

/~k

* This file was created automatically during
maeke.

*/

char Versionl D]="RAD ANCE 3. 1a | astnod Sat Jul 27
09: 01: 38 PDT 1996 by greg on hobbes";

Thisfileis created automatically and is used to identify the particular
version of the Radiance renderer. Insrc/rt/ Rmakefi | e, we seethis
module is dependent on al the common rendering source and header files.
Thus, any change to any of the constituent source code will cause
src/ rt/ Version. c to berebuilt with the name of the user compiling the
new version and when it was compiled.

Adding a New Primitive Type

One of the most common source modifications is adding a new scene
primitive type. Thisinvolves changesfirstto sr c/ conmon/ ot ypes. h,
where all the primitives are defined and named. This header fileisused by a
number of Radiance programs, including oconv, xform and the renderers
rtrace, rpict and rview. If the new primitive being added is a material,
pattern or texture, it may not be necessary to modify the code to oconv or
xform unless changes in coordinates somehow affect the parameters, in

Radiance Source Tree Roadmap Greg Ward Larson 12

which case an appropriate routine must be added to sr ¢/ gen/ xf orm c.
If the new primitive is a surface type, then it will be necessary to write an
octree intersection function inthesr ¢/ ot / directory aswell asa
transformation routinein sr ¢/ gen/ xf orm c.

A material, pattern or texture primitive means that new code must be
addedtosrc/ rt/ toimplement whatever it isthe new primitive does. A
new link isthen addedtosrc/ rt/ Rmakefi | e and
src/rt/initotypes.c.

Picture Filters and Translators

More programs are built inthe sr ¢/ px/ subdirectory than any other.
Thisis due partly to the many interesting and orthogonal operations that may
be performed on picture files, and partly to the plethora of other image
formats available for trandation. In fact, the current release of Radiance
supports only a small subset of the existing image formats, and anyone who
wants to volunteer their servicesin creating new ones will get nothing but
encouragement.

Returning to our earlier expository style, we pick two programs from the
src/ px/ directory and explain their compilations. The first program, pfilt,
Is the main picture filter for anti-aliasing, exposure setting and resizing. The
command rmake pfilt yields the following:

% rmake pfilt

cc -2 -DALI G\=doubl e -cckr -1../compn \
-L../lib -c pfilt.c

cc -2 -DALI G\=doubl e -cckr -1../compn \
-L../lib -c pf2.c

cc -2 -DALI G\=doubl e -cckr -1../compn \
-L../lib -c pf3.c

cc -2 -DALI G\=doubl e -cckr -1../compn \

-L../lib -o pfilt pfilt.o pf2.0 pf3.0 -Irt -Im

Fromthesrc/lib/librt. alibrary, thefollowing modules are also
loaded into pfilt:

Radiance Source Tree Roadmap Greg Ward Larson 13

badarg. c - check arg list against format

color.c - routines for scanline i/o
fropen.c - find and open a library file
fvect.c - routines for float vectors
getlibpath.c - return standard library path from
i mage. c - routines for inmage generation

| anps. ¢ - load | anp data

resolu.c - read and wite inmage resol utions
rexpr.c - regul ar expression parser
spec_rgb.c - convert colors and spectral
ranges

wor ds. ¢ - routines for recogni zi ng words

Many of these modules are needed for reading lamp data for color
balancing. Specificaly, f r open. c,get | i bpat h. c,| anps. c,
rexpr.c andspec_r gb. c arenot needed except to support the pfilt -t
option. The main module needed are col or . ¢ for reading and writing
picture scanlines.

The second program we will look at is the image trandator, ra_t8, which
converts Radiance picturesto and from 8-bit Targaformat. The compile
looks like this:

% rmake ra_t8

cc -2 -DALI G\=doubl e -cckr -1../compn \
-L../lib -c ra_t8.c

cc -2 -DALI G\=doubl e -cckr -1../compn \
-L../lib -c clrtab.c

cc -2 -DALI G\=doubl e -cckr -1../compn \
-L../lib -c neuclrtab.c

cc -2 -DALI G\=doubl e -cckr -1../compn \
-L../lib -ora_t8 ra_t8.0 clrtab.o neuclrtab.o \
-lrt -Im

Themodulesr c/ px/ cl rt ab. ¢ implements Paul Heckbert's median-
cut color quantization and sr ¢/ px/ neucl r t ab. ¢ implements Anthony
Dekker's neural-net quantization, respectively [Heckbert82][Dekker94].
(Thanks to both these authors for their help in implementing these routines.)
The other routines loaded from the standard library are:

color.c - routines for scanline i/o
colrops.c - integer operations on COLR data
header. c - information header i/o0

resolu.c - read and wite imge resol utions

Radiance Source Tree Roadmap Greg Ward Larson 14

Theroutinesinsr ¢/ common/ col r ops. ¢ areimportant for
improving the performance of the program by avoiding floating point
operations and conversions on the Radiance picture scanlines. These routines
are also used in the conversion of 24-bit color images, and a convenient
starting point for writing new image trandators is the skeletal converter
src/ px/ra_skel.c.

Utility Programs

Thesrc/ uti |/ subdirectory builds programs that do not fit
conveniently into any of the previous categories. Some of these programs
perform handy little functions like computing new views from old ones
(vwright), while others are executive interfaces capable of integrating and
coordinating other Radiance programs (rad, trad and ranimate). Sincethis
isreally a miscellaneous collection, there are really no typical or unusual
programs. Instead, we give examples of two subclasses of utilities. Thefirst
exampleis rpiece, aprogram that runs rpict to do something that it could not
do aseasly by itself. The second example is an executive program that
coordinates rendering tasks, rad.

The program rpiece isacontrol program for running rpict in parallel on
one or more hosts. Its compilation looks like this:

% r make rpiece

cc -DALI G\N=doubl e -cckr - -1../compn \
-L../lib -c rpiece.c

cc -DALI G\N=doubl e -cckr - -1../compn \
-L../lib -c Version.c

cc -DALI G\N=doubl e -cckr - -1../compn \

-L../lib -0 rpiece rpiece.o Version.o -lrt -Im

The only thing unusual about this compilation is the inclusion of
Ver si on. ¢, which isactually asymboliclinktosrc/ rt/ Ver si on. c,
the module automatically built during compilation of the renderers to indicate
what version of the software is being created. Thisisthe only example of a
link to a source module someplace besidessr ¢/ conmon/ . Thismoduleis
used by rpiece to indicate the software version in the header of its output
picture.

As our example of an executive programinsrc/ util /,welook at
rad, whose compilation looks something like this:

Radiance Source Tree Roadmap Greg Ward Larson 15

% r rake rad

cc -DALI GN=doubl e -cckr - -1../common \
-L../lib -c rad.c

cc -DALI GN=double -cckr @ -1../common \
L../lib -c | oadvars.c

cc -DALI GN=doubl e -cckr - -1../common \

-L../lib -orad rad.o loadvars.o -Irt -Im

Thesrc/util /| oadvars. ¢ moduleiscommon to both rad and
ranimate, and contains routines for reading control files with variable
assignments, as described in their respective manual pages. Linksto the
src/lib/librt. alibrary provide afew additional capabilities, but most
of the utility of this and the other executive programsis provided by the
running of the other Radiance programs such as oconv, mkillum, rpict and
pfilt.

Conclusion

We have given an overview of the principal Radiance source directories
and examples of some program compilations with the hope that this will start
the interested reader in their investigation of the code itself. We hope that the
relatively ssimple organization of the source code into asr ¢/ conmon/
subdirectory with shared headers and source files and six logically organized
program categories will smplify the understanding of the system. We did not
discuss the presence of other file types besides C program source, but certain
auxiliary files (e.g., *. cal), C-shell and Tcl/Tk scripts areincluded also in
the source directories either because they are needed by C programs or they
are program source in and of themselves.

Radiance Source Tree Roadmap Greg Ward Larson 16

	Radiance Source Tree Roadmap
	Scene Format Translators
	Generators and Scene Manipulators
	Scene Compilers
	Rendering Programs
	Picture Filters and Translators
	Utility Programs
	Conclusion

